为什么要使用复合材料(使用复合材料进行设计的优势)

在使用复合材料进行设计时,必须预先解决一个关键问题:为什么要使用复合材料?这个问题的答案很可能决定了在利用复合材料优势的同时优化设计的方向。

成本、重量、性能、零件数量和复杂性通常是零件设计的关键驱动因素,但这些因素可能相互冲突。例如,如果更轻的重量是“为什么是复合材料”这个问题的答案?与低成本或高性能解决方案相比,该部件可能需要不同的设计方法。有时很难同时获得更轻的重量、更低的成本和同等或更好的性能。通常,设计驱动程序的优先级将决定最佳设计。

在图 1 中,使用复合材料重新设计了管道,在立柱和复杂的肋结构之间添加了系带,以满足所需的性能。这显着减轻了重量,但与最初的简单钢焊接部件相比,无法实现成本降低。

为什么要使用复合材料(使用复合材料进行设计的优势)

降低系统成本的一种设计方法是零件整合,通过减少库存和更快的组装来实现节约。设计人员应考虑将零件组合成一个整体设计,结合配合零件并消除紧固件和连接操作。图 2 通过模制一个零件来代替三个机加工和组装的零件来说明这一概念。

为什么要使用复合材料(使用复合材料进行设计的优势)

对于复合材料工程师来说,了解他们设计的需求并确定其优先级尤为重要。要真正利用复合材料,了解零件的使用方式——包括载荷、连接点、任何尺寸限制、配合零件和使用材料的环境——是关键的第一步。重要的是要了解功能性复合设计可能看起来不像原始金属设计。

设计师在用复合部件替换金属时常犯的一个错误是试图让它们看起来一样。这种方法不太可能利用复合材料的优势。金属设计可能是用各向同性特性(所有方向上的特性相同)建模的,或者可能根本没有建模,只是过度设计以发挥作用。大多数复合材料具有各向异性特性(不同方向的不同特性),应使用这些特性进行建模。不同形式的复合材料具有不同程度的各向异性。

各向异性的高低与材料和制造工艺有关:手糊/真空袋/高压釜、喷涂、RTM、压缩/注塑、缠绕、拉挤等复合材料制造工艺都有不同的各向异性,因此需要不同的设计方法。在各向异性水平更接近各向同性的某些情况下,使用各向同性属性对复合材料进行建模是可以接受的。复合模塑料是使用各向同性特性的一个例子。但是,这应该用作高级别的初步分析,而不是合格的分析。

设计师需要注意制造过程。在图 2 中,钢棒是圆形的,因为这是钢坯的常见形状。配合零件具有易于加工的圆孔,可以组装到圆杆上。复合材料设计师必须达到相同的刚度,这是通过改变杆部件的横截面来实现的。设计师还必须考虑配合零件的连接。在此示例中,一些配合部件已直接模制到杆上。

使用复合材料进行设计分析和建模现在是一门被越来越多的工程师使用的学科。该行业的工程师获得“经验”知识,可以本能地使用随经验增长的复合材料进行设计。当非复合材料工程师试图在金属设计中替代复合材料或将其建模为金属材料时,通常会遇到错误。金属设计通常不是复合材料的最佳设计。

复合材料零件可以通过多种方式进行定制。这种剪裁可以在零件制造过程中进行,也可以在材料本身中进行。零件可以在一个方向上具有局部增强、定向纤维或多根纤维,而不会增加不需要的厚度。例如,铺设的部件在负载路径方向上​​可能有更多的单向纤维层,但在其他方向上有足够的纤维层来处理这些其他方向上所需的力。缠绕部件可以改变缠绕角度以增强特定方向的性能。无规纤维压缩成型部件可能在需要额外强度或刚度的区域添加了局部连续纤维材料。同样,由于是由多个元素组成的“复合体”。

复合材料可提供可定制的解决方案。性能或价值不仅在于机械性能或重量,还包括美观、导电性、隔热性、防弹或抗冲击性、火焰/烟雾/毒性合规性或其他增值属性。

总而言之,复合材料设计是一个复杂的过程,需要考虑关键驱动因素,包括成本、重量、性能、零件数量和复杂性。相对优先级将受到服务负载、服务环境/性能、连接、特定零件要求、各向异性特性和制造过程的影响。本专栏简要介绍了这些内容,但都值得深入了解以确保最佳设计。

(114)
胶衣颜色匹配和控制(胶衣色差范围的最佳控制)
上一篇 2022-08-22 09:35
硅胶模具类型和固化方式(硅胶模具的特性说明)
下一篇 2022-08-22 10:24

猜您喜欢

  • 碳纤维板表面坑洞怎么处理(碳纤维孔隙原因)

    由于碳纤维多是以布的形态使用,无论是斜纹还是平纹布都会有交错点位置,这些位置很容易出现孔隙。加上玻璃钢工艺差别,尤其会在手糊部件上出现这些问题空隙或者坑洞问题几率更大些。这种处理相对不是很麻烦,但也不会很简单。你可以先240-400目砂纸水磨后,使用专用修补腻子找平即可。如果需要透明的,可采用原环氧树脂找平即可。如果是比较小的碳纤维孔隙,可以直接光油喷涂覆盖…

    2021-12-16
    7.0K00
  • 为什么易打磨胶衣好打磨,是硬度不高吗?

    不是的,硬度是不低的; 虽然打磨性与硬度有关系,但是易打磨胶衣的易打磨特性是来自于填料的,这些特殊填料,提高了胶衣打磨速度,而不是胶衣硬度低的关系。 这就好比粗砂纸会比细砂纸打磨更快的道理是一样,从上图我们可以看到那些类似粉状物就是易打磨填料,不用害怕沉淀,使用前均匀搅拌就可以。 看看下图,易打磨胶衣使用后的效果,是不是值得肯定的,尤其大型原模处理,这是你最…

    2019-11-23
    8.6K00
  • 获取空气:最新的轻质碳纤维滑雪板设计

    在单板滑雪方面,爱好者总是在寻找能够提高性能、敏捷性和速度的装备。近年来,材料和设计的进步彻底改变了滑雪板的结构,导致了轻质碳纤维滑雪板的出现。 这些尖端的滑板为骑手提供了无与伦比的响应能力、稳定性和控制力,使它们成为所有技能水平骑手的游戏规则改变者。让我们深入探讨轻量级滑雪板设计的最新创新及其对这项运动的影响。 滑雪板结构的演变 传统上,滑雪板由木材、玻璃…

    2024-04-27
    6.3K00
  • 粘合剂最常见的用途是什么?

    单组分环氧树脂主要用于制造领域,如汽车、航空航天和电子工业。这些胶水适用于连接金属、陶瓷和耐热塑料。它们能够承受高静态和动态负载,并且还耐高温。 两部分环氧树脂非常适合粘合木材、石材、混凝土、大理石、金属、玻璃、陶瓷、硬质PVC和碳化物板材。因此,这种类型的胶水用于建筑和制造领域,例如用于连接把手。由此产生的连接非常牢固和坚韧,但又很灵活。 单组分聚氨酯胶粘…

    2023-02-13
    7.2K00
  • 粘合聚苯乙烯 – 聚苯乙烯胶指导和测试

    为了能够成功地粘合聚苯乙烯,您不仅需要一点专业知识,还需要合适的聚苯乙烯胶。因为如果你使用错误的胶水,聚苯乙烯可能会简单地溶解。我们将在胶水测试中告诉您,并指导您如何最好地粘合聚苯乙烯以及哪种特殊胶水最适合聚苯乙烯。 什么是聚苯乙烯? 聚苯乙烯泡沫塑料是塑料聚苯乙烯的品牌名称,由爱德华·西蒙于1839年发现。自1950年以来,它一直在大规模生产。 聚苯乙烯由…

    2023-07-26
    4.2K00
  • 怎样消除树脂内的气泡呢?

    我们常常在树脂铸件中遇到那些烦人的小气泡。要解决这个问题,首先得明白它们是怎么形成的。 气泡是如何产生的? 这些微小的气泡其实是被困住的空气,因为树脂的粘稠度高而无法逃逸。 粘稠度:“粘稠度描述了流体内部流动的阻力,可以视为流体摩擦力的衡量。所以,水被认为是‘稀薄的’,具有低粘稠度,而植物油则被认为是‘浓稠的’,具有高粘稠度。” 由于树脂的粘稠度高于水,它会…

    2025-01-24
    4.4K00
  • 树脂不粘在边缘:一个常见问题

    许多树脂艺术家在使用树脂时都面临着一个常见问题:树脂无法正确粘附在项目的边缘。这可能会令人沮丧,并导致外观不均匀、覆盖范围不一致和其他问题。本博客的主要结论是,对于树脂不粘在边缘的问题,有一些简单的解决方法。通过了解基本原因并实施正确的技术,您可以实现无缝粘合并创建令人惊叹的树脂项目。 尽早解决树脂不粘在边缘的问题至关重要。它有助于避免材料浪费并确保专业的表…

    2025-02-03
    4.1K00
  • 我可以将旧硅胶磨碎并添加到新硅胶中吗?

    有些人以这种方式重复使用硅胶;但是,您应该注意这种方法存在一些挑战。 简而言之,将旧有机硅融入新有机硅是一个冒险的提议。不建议将旧硅胶磨碎并添加到新硅胶中。这是因为硅胶的性质和质量可能会受到磨碎过程的影响,从而导致不可预测的结果和可能的问题。 硅胶是一种特殊的材料,其性质和特点与原料和制造过程密切相关。当您将旧硅胶磨碎后添加到新硅胶中时,可能会引入不一致的成…

    2022-11-04
    9.1K00
  • 环氧树脂过热剧烈固化的最常见原因

    环氧树脂常以其2组分液体形式。但是,一旦两种组分混合,树脂将开始催化并产生热量。重要的是要确保树脂在开始固化时不会过热。虽然温度升高可以促进固化过程,但如果树脂变得太热太快,则会导致放热反应(闪光固化),这可能导致树脂立即固化、开裂并产生烟雾。 以下是树脂过热的最常见原因: 热量积聚 一次混合过多的树脂,让树脂在混合杯中放置太久,或倒入太厚的一层都会导致过多…

    2023-08-28
    4.3K00
  • 在火箭技术中充分利用凯夫拉芳纶织物的威力

    在不断发展的太空探索领域,材料在决定任务成功与否方面发挥着关键作用。在这些材料中,凯夫拉芳纶织物以其卓越的性能脱颖而出,在火箭领域有着重要的应用。 凯夫拉纤维简介 凯夫拉纤维是一种著名的芳纶纤维,以其高抗拉强度、热稳定性和抗冲击耐磨性而闻名。它由杜邦公司开发,已成为航空航天和国防等各行业的首选材​​料。在火箭领域,芳纶纤维的独特属性提供了多种优势。 火箭体结…

    2024-12-09
    4.4K00

发表回复

登录后才能评论
分享本页
返回顶部