碳纤维和其他碳基材料的导热性

碳纤维和其他碳基材料的导热性

正在开发碳纤维和其他碳基材料以替代其他更传统的导热材料。

热传导是什么意思?

热导率是材料传导热量的能力。它由傅里叶热传导定律量化:

当体内存在温度梯度时,热能会从高温区流向低温区。这种现象称为传导热传递,并由傅立叶定律描述。

高导热率材料之间的传热发生率高于低导热率材料之间的传热速率。换言之,具有高导热率的材料比用作热绝缘体的具有高热阻率的材料导热性更好。

热导率单位

在英制单位中,热导率以 BTU/(hr·ft·F) 为单位测量。

在 SI 单位(国际单位制,公制)中,单位为瓦特每米开尔文 (W·m-1·K-1)。

几个行业都关注材料的导热性和电阻,并设计了不同的尺度以满足他们的需求。因此,建筑人员使用R 值来评估绝缘材料,而服装行业使用togs 和 clo来定义纺织品的绝缘值。

热是如何传导的?

非金属和金属的导热系数不同。

在金属中,导电性主要是由于自由电子。这就是具有高导电性的金属也具有高导热性的原因。热导率会随着温度的变化而变化,通常会随着温度的升高而降低。

非金属热导率主要是由于晶格振动(声子)。除了低温下的高质量晶体外,没有太大差异,热导率基本保持不变。

比较各种材料的热导率。

此表中的单位是W/m*K表示电导率,g/cm(3)表示密度。

注:下表仅供比较。热导率将随化学成分、木材类型、晶体结构、测量方法、纤维排列、温度梯度、前体材料而变化。它显示了材料的相对电导率。各种形式的碳纤维千变万化,实在是无法一一列举而不作说明,这也是为什么碳纤维的导热性能很少出现在表格中的原因。

材料 导电性 密度
210 2.71
黄铜 (70Cu-30Zn) 115 8.5
398 8.94
金子 315 19.32
428 10.49
钻石 2500 3.51
石墨(热解,一些平面) 300-1500 1.3-1.95
石墨烯(理论) 5020 不适用
碳纳米管(理论) 3500 不适用
碳纤维 21-180 1.78
纤维方向的高模量 MP
中间相沥青碳纤维
500 1.7
141 2.33
环氧树脂 0.5-1.5 1.11-1.4
环氧树脂中的碳纤维 5-7 平面内 .5-.8 横向 1.11-1.4
空气(不动) 0.026 不适用
玻璃 .93 2.3
80 6.98
木头 .15 0.6
发泡聚苯乙烯 .03 不适用
矿棉绝缘 .04 不适用

这里有一些更广泛的热导率表:维基百科热导率表, 工程工具箱的表是替代品

我 从内布拉斯加大学的博士论文中获得了碳纤维/环氧树脂复合材料的热性能测量数据。跳至第 128 页查看结果,但请查看过程。它很好地说明了测量非金属复合材料的热导率必须做的工作。

什么是石墨烯?

石墨烯是一种扁平的单层碳原子,紧密排列在二维 (2D) 蜂窝晶格中(想想微型鸡丝结构),是石墨材料的基本组成部分。它可以包裹成富勒烯(碳纳米管的另一个名称),或堆叠成 3D 石墨。

石墨烯片堆叠形成石墨。最近已经生产出石墨烯片材,并且是深入研究的主题。它们尚未广泛使用,但很快就会进入您附近的行业!

注意,有大量关于碳纤维、碳纳米管、石墨烯导热性的文章和研究论文。由此产生的结果是:

  • 测量值的范围很大。对于跨片材测量的碳纤维复合材料,它可能非常低,或者对于热解石墨和金刚石等材料来说非常高。
  • 碳纤维、石墨和其他碳衍生物因测量平面而异。沿着纤维,电导率很高,而在平面上,电导率大大降低。
    碳纤维的碳含量越高,碳化程度越高,导热率越高。
  • 碳复合材料难以测量,因为很大程度上取决于制造方法、基质的确切成分、空气、纤维的排列、测量方法、样品的制备。
  • 已经有几个实验表明,通过掺杂碳纳米管和其他碳基材料来增加碳复合材料的热导率。
  • 由于技术尚未开发,一些报告的数字是理论上的,尚未实现。

为什么要使用碳基热材料?使用碳纤维、石墨等有什么好处?

尺寸稳定

碳纤维比铜和其他金属具有优势,因为它的热膨胀系数非常低。当材料被加热时,它会膨胀,然后在冷却时再次收缩。当公差非常关键时,这可能是一个重要问题。光学系统和微电子就是例子。

铜的系数为 16.6 (10-6 m/m K),而碳纤维可低至 0。因此,铜与碳纤维/石墨材料结合,形成了一种线性热膨胀系数明显更小的材料.

铝和碳已经尝试过,但混合物形成了导致腐蚀的电偶。铜是更好的选择。腐蚀不是问题,如果碳纤维是高度石墨化的,则实际导热率可能高于单独的铜。

显着更大的热导率

一些石墨和金刚石远高于铜和银。高达 5 倍的导电性。通常成本高得令人望而却步。高导电性石墨非常脆弱,这是一个缺点。

重量和强度

碳材料比金属轻得多。碳纤维还具有更高的强度重量比。

普通环氧树脂中的任何碳纤维只能承受不会损坏环氧树脂基体的温度。因此,常规复合材料的用途有限。已经开发了高温环氧树脂,但它确实不是很高。存在制造碳纤维面板而不将它们嵌入环氧树脂的方法,这大大扩展了温度范围。有关高热电导碳纤维表征的链接,请参见侧面板。

石墨可用于会损坏传统材料的条件。它具有很强的耐腐蚀性和良好的无污染性。西格里集团提供由石墨制成的热交换器

那么……碳纤维是良好的导热体吗?

像往常一样,答案是“视情况而定”。简短的回答是“不”,当普通碳纤维由普通环氧树脂制成并预计会在整个厚度上传导热量时。如果添加了石墨或金刚石的高度碳化的盘式纤维,在纤维长度上的热传递测量,它非常好,可以与铜相媲美并超过铜。石墨是一种常见的换热器材料。

其他碳材料,如金刚石或一些石墨,如热解石墨,是一流的,可以比铜好 5 倍。已有研究通过添加石墨烯来改善玻璃纤维复合材料的导热性。注意到了 50% 的改进。

(56)
上一篇 2022-11-10 20:47
下一篇 2022-11-10 21:01

猜您喜欢

  • 如何清除墙上的白色腻子?

    白墙腻子可以填补瑕疵,为绘画提供光滑、水平的表面。无论您使用丙烯酸、水泥还是矿物基墙面腻子,它都可以很快干燥和硬化。重要的是尽快用湿海绵或布从不需要的区域去除多余的油灰。如果让腻子变干,您仍然可以去除多余的部分,但需要更多的努力。 1.将油灰刀或刀片与墙壁成低角度,将多余的油灰从墙上刮掉。小心操作,以免刮伤墙壁。 2.用干净的湿海绵擦掉墙上的腻子。用干布擦干…

    2022-12-30
    6.7K
  • 如果树脂与固化剂的比例相同,我可以混合两种不同品牌的环氧树脂吗?

    我的官方回答是否定的,原因如下。环氧树脂具有非常特定的 EEW(环氧当量),我们从中配制 B 部分硬化剂,它具有自己的胺值,我们计算当量以确定数学(化学计量)值,称为 PHR 或每百份树脂。因此,我们制造的 A 部分环氧树脂与特定硬化剂中的 B 部分硬化剂在数学上是匹配的,这也是我不建议混合不同制造商的树脂和硬化剂的原因。 看到来自 2 家不同制造商的具有相…

    2023-02-20
    2.7K
  • 环氧树脂车库地板值得吗?

    环氧树脂是车库地板的绝佳选择。它经久耐用,易于清洁,并且在损坏时可以修复。对于形状不是很好的混凝土地板,环氧树脂也是一种选择。 环氧树脂地板是一种流行的选择,因为它耐用且易于安装。当您第一次在车库地板上涂上环氧树脂涂层时,它看起来会很暗淡,直到完全变干——这通常只需要一天左右的时间,具体取决于车库的温度(如果您在冬季安装地板,这可能需要更长)。 一旦混凝土或…

    2023-01-08
    3.9K
  • 如何用紫外线固化环氧树脂?

    知道如何用紫外线固化环氧树脂总是一个好主意。有许多不同的产品使用这种类型的固化工艺,如果您不知道自己在做什么,就很难正确完成工作。在本文中,我们将讨论用紫外线固化环氧树脂所需的所有步骤,让您的产品变得精美! 什么是环氧树脂? 在我们讨论如何固化环氧树脂之前,先了解什么是环氧树脂总是一个好主意。环氧树脂用于许多不同的应用,例如涂料、粘合剂和保护涂层等。它们可以…

    2023-02-03
    8.0K
  • 拉挤成型:基础知识

    介绍什么是拉挤成型、其优点和缺点以及典型应用的入门读物。

    2023-02-18
    6.9K
  • 玻璃钢外壳相对于金属外壳有哪些优势?

    相对于金属外壳,玻璃钢外壳具有以下一些优势: 需要注意的是,具体的应用环境和需求可能会影响对材料选择的考虑。在某些特殊情况下,金属外壳可能更适合,例如对极端温度、压力或其他特殊要求的应用。因此,在选择适合的外壳材料时,建议综合考虑特定应用的需求和条件,并咨询专业人士以获取准确的建议。

    2023-09-05
    8.8K
  • 环氧树脂变黄或混浊以及如何防止它

    众所周知,环氧树脂是当今市场上最坚固、最耐用的树脂之一。然而,它的主要缺点之一是暴露在室外环境中会降解。这种降解导致环氧树脂“变黄”反映的变色。泛黄是机械性能和整体性能下降的标志。了解为什么会发生这种降解有助于确保采取适当的保护环氧树脂的措施,并且可以在选择所用的各种产品时加以考虑。环氧树脂:紫外线照射和氧化当暴露在来自太阳的紫外线能量下时,所有未经处理的环…

    2022-11-20
    8.1K
  • 硅胶模具制作 – 入门指南

    硅胶是制作模具的最佳材料之一,而且制作过程实际上非常简单。能够快速轻松地制作模具意味着您可以制作几乎任何东西的树脂、混凝土、粘土和金属版本。有很多方法可以自己制作硅胶模具。 用硅胶制作模具的一种快速简便的方法是将任何坚固耐用的东西(例如您想要复制的预制零件)铸成模型,并在硅胶凝固后将其取下。如果使用硅胶,您的模具将在大约 20 分钟内准备就绪。虽然您可以随时…

    2023-04-27
    5.8K

发表回复

登录后才能评论
分享本页
返回顶部