什么是镜面抛光技术及其应用?

什么是镜面抛光技术及其应用?
  • 镜面抛光工艺的发展与现状
  • 抛光原理
  • 影响抛光效率的因素
  • 镜面抛光加工工艺的作用
  • 镜面抛光工艺的优缺点
  • 抛光工艺有哪些类型?

镜面抛光工艺的发展与现状:

近年来,随着国内机械设备制造领域技术的不断发展,对具有高表面质量和超镜面外观的工件的需求不断增加。

在传统的机械抛光工艺中,砂轮会对工件表面造成大量磨损,无法保证表面精度。磨具的强烈挤压作用会使金属产生塑性流动,迫使其进入金属表面的微观凹坑,造成表面外观的变形。材料表面仍将容易因疲劳磨损而持续脱落。表面可能看起来有光亮的外观,但不会出现明显的镜面效果,无法保证工件的精度。

机器抛光适用于某些类型的产品,自动抛光的优势是不可否认的。生产效率高,大批量生产,可节省大量劳动力,改善生产环境,减少粉尘危害。抛光自动化已成为抛光机行业的趋势。

抛光原理:

可以使用柔性抛光工具和磨粒或其他抛光介质对工件进行表面抛光。抛光不是为了提高工件的尺寸精度或几何精度,而是为了获得光滑的表面或镜面光泽。通常使用由多层帆布、毛毡或皮革制成的抛光轮。抛光时,高速旋转的抛光轮(圆周速度20m/s以上)压在工件上,使磨料滚动,对工件表面进行微切。表面材料去除量很小,因此加工效率低,但可以获得光亮的加工表面。表面粗糙度一般可达Ra0.63~0.01微米的Roughness Average;当使用不油腻的消光抛光剂时。

影响抛光效率的因素:

抛光将以等于 R=kpvt 的速率去除表面材料,其中 p 是抛光压力,v 是抛光速度,t 是处理时间,k 是比例常数。为了保持加工效率,压力、速度、浆料的浓度、温度和抛光机的状态是需要管理以稳定抛光的重要因素。

镜面抛光加工工艺的作用:

  • 去除表面粗糙度并消除划痕、污垢夹杂物和微裂纹等缺陷。
  • 减少表面摩擦,提高耐磨性。
  • 改善零件表面的物理机械性能,改善零件表面的应力分布。
  • 提高零件的精度,保证装配的可制造性。
  • 提高制件表面的光泽度和亮度,满足清洁生产要求。
  • 提高零部件和整机的使用寿命。
  • 提高涂层与基材的结合力,满足外观装饰要求。

镜面抛光工艺的优缺点:

抛光技术可分为机械法、化学和电化学法、热能法三大类。根据加工时所用磨料的状态,机械方法可分为自由磨料抛光和非自由磨料抛光两种形式。

抛光工艺有哪些类型?

  1. 干法砂轮抛光:
    在辊轴零件的抛光过程中,一般采用非自由磨料机械抛光技术。应用最广的是干砂轮抛光法。生产效率高,投入成本低,适合批量生产加工。干抛时,砂轮表面涂有抛光蜡,沿切线方向高速旋转,与工件表面接触。由于强大的挤压切削力,抛光表面产生高温,使金属表面产生塑性变形。金属开始产生塑性流动并被迫进入微观皮塔,凹陷区域被填充。在金属表面迅速形成一层很薄的氧化膜或其他化合物膜。
  2. 金属镜面加工技术:
    超声波、高频振动系统产生的超声波振动能量作用于金属工件表面,使工件表面金属产生塑性变形。冷硬化可改善表面质量,增加硬度并降低表面粗糙度。微观裂纹的桥接提高了工件的疲劳强度、耐磨性和耐腐蚀性。
  3. 湿砂带抛光:
    湿式砂带抛光时,砂带通过接触轮接触工件表面。接触轮的材质一般为橡胶或塑料,砂带基材为布、纸或聚酯薄膜,均具有一定的弹性。磨削时,由于磨粒的挤压,被加工表面也会产生塑性变形。但由于弹性变形区面积大,磨粒所受载荷小,受力更均匀。湿法砂带抛光采用细化磨粒、载体砂带、加工液的多种组合方式进行研磨抛光。表面进行超精密振动打磨,达到超镜面装饰效果。
  4. 电化学抛光:
    一般采用磷酸的电解抛光液。具有微观粗糙度的零件被溶解,表面粗糙度降低。可获得镜面光亮和流平,该工艺可作为装饰电镀的前处理。电化学抛光具有良好的亮度和流平性,溶液的使用寿命长,抛光速度快,抛光效率高。

研磨过程变质层:

加工变质层会导致工件材料的结构和成分损坏或变形。变质层的硬度、表面强度等机械性能和耐蚀性等化学性能也因基材不同而不同。

磨削金属材料时,虽然不会发生碎裂,但当磨粒旋转刮削时,由于材料的塑性变形,通常会形成劣化层。相反,在多晶金属材料中,晶粒越细,最外层的位错越多,发展为非晶态。在某些情况下,金属会与大气中的氧气发生反应。在某些情况下,磨粒会由于塑性变形而嵌入金属中。

(70)
材料号的头像材料号特邀作者

猜您喜欢

  • 剩下的环氧树脂怎么处理?

    您有项目中剩余的环氧树脂吗?不要让它白白浪费!多余的环氧树脂可以做很多不同的事情。您可以使用这篇博文作为指南,了解当您的车库或车间中有剩余的环氧树脂时该怎么做。 你能用剩下的环氧树脂做什么? 将其与油漆混合以创建自定义颜色 将其用作木材或混凝土上的密封剂 用它来修复损坏的物体 用它做一个 DIY 项目! 当涉及到您可以用剩余的环氧树脂做什么时,可能性是无穷无…

    2023-01-31
    9.1K00
  • 树脂搅拌全是气泡的原因

    如果树脂搅拌时出现大量气泡,可能是由于以下原因: 搅拌过程中过度搅拌引入空气:过度搅拌会使树脂与空气充分接触,导致气泡的形成。尝试减小搅拌速度和时间,避免过度搅拌,以减少气泡的产生。 树脂材料中含有挥发性成分:某些树脂材料可能含有挥发性成分,例如挥发性溶剂或水分。在搅拌过程中,这些成分会蒸发并形成气泡。确保使用的树脂材料干燥和清洁,有助于减少挥发性成分的含量…

    2023-10-07
    8.3K00
  • 如何提高手糊玻璃钢制品质量(提升玻璃钢品质的方法)

    手糊成型是复材行业中最为常见的玻璃钢工艺,操作相对简单,无需大量的设备和资金投入,即可低门槛的进入。 正因如此,在利益的驱动下,很多潜在能接触到玻璃钢订单的人,对自行制造产生了浓厚的兴趣。很多的玻璃钢项目,就是在老板自己根本就不懂,只要利益足够大,找到几个玻璃钢工人的前提下,就匆匆上马了。 这样做出来玻璃钢制品的质量,根本别提改进工艺,提高竞争力了,能保证产…

    2018-11-23
    8.8K00
  • 如何烧木头做环氧树脂?

    木材是制造环氧树脂的重要资源。它燃烧缓慢,可以很容易地从倒下的树上收集起来。本文将为您提供通过燃烧木材制作自己的环氧树脂所需的步骤。 你能在烧焦的木头上涂环氧树脂吗 当然。让我们看看如何为环氧树脂烧木头,然后回顾人们在项目中烧木头时遇到的一些最常见的用例。 烧木头在 DIY 项目中很常见。 如果您要建造家具或橱柜等长期物品,燃烧木材可能不是一个好主意,但燃烧…

    2023-02-04
    8.9K00
  • 环氧树脂意见——测试结果、保证和其他有害的灰色地带

    刚起步的承包商还需要在涂料世界的棘手的“烟雾和镜子”环境中导航,毫不奇怪,只有极少数人能够通过。我一次又一次地看到同​​样的故事发生——新的承包商带着希望和热情出现,但很快就失败了,因为他们每次都被半真半假的事实和空洞的承诺击中。失败的工作接踵而至,信心水平直线下降。最后,他们别无选择,只能收拾行装退出,这是一个无情行业的另一个受害者,这个行业似乎太愿意进行…

    2023-03-08
    3.9K00
  • 玻璃钢瓦的寿命有多长?

    玻璃钢瓦的寿命可以根据多种因素而异,包括材料质量、安装质量、环境条件和维护保养等。一般而言,如果正确安装和适当维护,玻璃钢瓦的寿命可达到20年以上甚至更长。 以下是一些影响玻璃钢瓦寿命的因素: 需要注意的是,以上提到的寿命仅为一般估计,实际寿命可能会因多种因素而有所不同。因此,在选择玻璃钢瓦时,建议参考制造商的产品说明和保修信息,以了解其预期的使用寿命和维护…

    2023-08-15
    7.3K00
  • 玻璃钢树脂有保质期吗多久

    玻璃钢树脂通常是由树脂和固化剂组成的混合物,在储存和使用过程中具有一定的保质期。保质期的长短取决于具体的树脂类型和制造商的建议。 一般而言,玻璃钢树脂的保质期在储存在密封、干燥和恒定温度条件下可以延长。通常,未开封的玻璃钢树脂在适当储存条件下可以保持几个月到一年不等。 然而,一旦打开树脂包装,并且树脂与空气接触,其固化特性和保质期会受到影响。树脂暴露在空气中…

    2023-12-08
    5.4K00
  • 复合材料的保质期和储存

    “保质期”或“储存”寿命都是几乎所有复合材料制造产品的重要特征。当按照制造商的存储建议存储时,它是给定材料或产品的“失效日期”。遵守这些存储建议可确保在存储的整个生命周期内保持产品质量。 本主题将涵盖各种复合材料产品的平均保质期,如何正确储存它们,以确保未来每次复合材料制造的质量。阅读和理解每种产品的技术数据 (TDS) 和安全数据表 (SDS) 是最佳做法…

    2022-11-20
    8.6K00
  • 你需要知道的胺腮红:环氧树脂的无形敌人

    胺腮红是使用环氧树脂时的一个常见问题,但它到底是什么以及如何预防它?在本文中,我们将解释有关胺腮红的所有信息,以便您可以毫无后顾之忧地开始您的环氧树脂项目。 什么是胺腮红? 胺腮红是环氧树脂硬化时可能发生的化学反应。当树脂的胺组分与空气中的水分和二氧化碳发生反应时,就会发生这种现象。该反应会在固化的环氧树脂表面产生薄薄的油状残留物。胺腮红通常几乎不可见,但它…

    2024-11-13
    4.8K00
  • 如何判断环氧模具胶衣的质量和耐用性吗?

    当评估环氧模具胶衣的质量和耐用性时,可以考虑以下几个方面: 综合考虑以上因素可以帮助评估环氧模具胶衣的质量和耐用性。 同时,与供应商进行沟通和咨询,索取详细的技术信息和性能数据也是获取准确评估的重要途径。

    2023-08-30
    4.2K00

发表回复

登录后才能评论
分享本页
返回顶部