在拉挤玻璃纤维和拉挤碳纤维之间做出选择

在拉挤玻璃纤维和拉挤碳纤维之间做出选择

拉挤玻璃纤维已成为现代世界的一个共同特征,大量用于建筑、公用事业、基础设施和消费品行业。 这种复合材料有两种关键成分:玻璃纤维和某种树脂,例如聚酯或乙烯基酯。在某些情况下,制造商可能会选择用类似的碳纤维材料代替玻璃纤维。这种交换使所得复合材料具有略微不同的特性,使其更适合特定应用。如果您想了解更多关于这两种拉挤产品的信息,请继续阅读。本文详细介绍了拉挤玻璃纤维和拉挤碳纤维之间的一些主要区别。拉挤工艺快速概览在深入研究玻璃纤维和碳纤维之间的差异之前,回顾一下这两种材料的制造过程将会很有帮助。拉挤成型涉及通过称为树脂浸渍机的特殊机器拉动增强材料(此处为玻璃纤维或碳纤维)。当树脂从机器的一端拉到另一端时,每根纤维都涂上了一种特别选择的树脂。然后湿纤维通过预成型导向器,使材料具有所需的形状。最后,纤维进入一个加热模具,仔细监测其温度使树脂固化成硬化形式。玻璃纤维和碳纤维玻璃纤维最初是作为无机硅砂存在的,它与石灰石和苏打灰一起被加热到极端温度——准确地说是2500 华氏度在此温度下,沙子呈熔融状态。然后,特殊的成型设备将熔融玻璃拉成令人难以置信的细线。相比之下,碳纤维最初是有机聚合物——换句话说,是与碳原子结合在一起的长分子链。在大多数情况下,这些聚合物通过聚丙烯腈 (PAN) 工艺转化为碳纤维。聚丙烯腈是用于制造碳纤维的特定聚合物的名称。多步 PAN 工艺包括将聚丙烯腈纺成纤维,进行化学改变以使其稳定,然后碳化和处理纤维表面。结果是一种比玻璃纤维更细的纤维,但可以采用与玻璃纤维完全相同的方式引入拉挤工艺。玻璃纤维与拉挤碳纤维现在您对玻璃纤维和碳纤维的起源有了基本的了解,您可能想知道它们在用作拉挤材料时表现出什么样的差异。以下是需要注意的四个最重要的比较点:

  • 重量和强度

由于其股线的直径相对较细,碳纤维的重量大约是玻璃纤维的一半。然而,当比较同等的拉挤玻璃纤维和拉挤碳纤维时,这种差异可能并不那么显着,因为树脂增加了大量的体积,通常在这两种情况下都超过了纤维本身。  碳纤维还表现出比玻璃纤维更大的纤维强度。然而,与重量差异一样,这种强度差异本身并不一定是一个重要因素。例如,碳纤维的纤维强度为 4127,而称为 E 玻璃的玻璃纤维类型的纤维强度为 3450——大约低 16%。然而,当您同时考虑这些因素时,两种材料之间的差异就会成为焦点。强度重量比表示每种材料相对于其重量的强度。E Glass 的强度重量比为 564,而碳纤维的强度重量比为 1013——几乎是后者的两倍。这种相对于重量的高强度意味着制造商在拉挤给定产品时需要使用更少的碳纤维。因此,拉挤碳纤维产品通常可以拥有更薄的横截面。这是真正减轻重量的地方,因为需要使用的树脂更少。

  • 刚性和韧性

除了比玻璃纤维更坚固外,碳纤维也更硬。这种额外的刚度可以证明非常有用,使制造商能够满足更精确的刚度需求。例如,CERN大型强子对撞机内的硅跟踪器模块需要一定程度的刚度,而只有碳纤维拉挤成型才能提供。然而,这种增加的刚性并不一定意味着碳纤维是所有应用的更好选择。玻璃纤维具有相对柔软的特性,对于需要高柔性图案的应用来说是更好的选择。碳纤维的小弯曲窗口可能会妨碍其在此类应用中的使用。正如重量和强度之间的关系一样,拉挤材料的刚性会影响其长期韧性。玻璃纤维通常被认为比碳纤维更坚韧,因为它更柔韧的特性使其更容易承受压力和身体虐待。碳纤维尽管强度更高,但断裂点通常较低,因此随着时间的推移更容易损坏。

  • 热膨胀

与钢和铝等材料相比,玻璃纤维的热膨胀系数相对较小——这意味着它不会因温度变化而显着变大。也就是说,如果暴露于足够极端的变化——或者如果公差特别严格——那么玻璃纤维拉挤成型可能不是合适的选择。碳纤维在这方面有一个显着的特性:它实际上具有负的热膨胀系数。因此,碳纤维会随着温度下降而膨胀。这种趋势有效地抵消了用于将纤维粘合在一起的树脂基体具有正系数这一事实,基本上导致接近中性的整体系数。

  • 成本

成本方面的优势显然落在了玻璃纤维的一边。生产长碳纤维是一个耗时且困难的过程,这自然使碳纤维更加昂贵。同样,玻璃纤维的更广泛用途——包括非突出产品——有助于确保其价格点保持更具竞争力。归根结底,玻璃纤维和拉挤碳纤维都具有独特的性能,但都不是所有应用的明显赢家。相反,您必须仔细考虑给定产品的需求和参数,以便选择最适合您需求的材料。

(93)
材料号的头像材料号特邀作者

猜您喜欢

  • 为什么我的环氧树脂混合物感觉很热?

    一旦将树脂和硬化剂结合在一起,就会发生化学反应以开始固化过程。在这种化学反应过程中会产生热量,这是完全正常的。树脂混合物的量越大,热量输出越大。环氧树脂的配方可防止由热能(热)引起的黄变。 当混合环氧树脂和其对应的固化剂时,反应会释放热量,这是正常的化学反应过程。这种热量释放通常称为“固化反应热”,它是环氧树脂硬化过程中的一部分。一些常见的原因会导致环氧树脂…

    2022-11-15
    8.3K00
  • 模具脱模剂对人体有害吗?

    一般情况下,模具用的脱模剂在正确使用和适当通风的条件下,对人体的健康风险是较低的。然而,脱模剂的具体成分和化学性质可能有所不同,因此需要谨慎使用并遵循以下几点: 阅读产品说明:仔细阅读脱模剂产品的使用说明和安全数据表,了解其成分、特性和安全操作指南。 适当通风:在使用脱模剂时,确保工作区域有足够的通风,以减少潜在的气体或蒸汽积聚。可以通过打开窗户、使用排风系…

    2020-02-09
    8.7K00
  • 树脂选择(选择树脂的种类和考虑因素)

    从不同树脂的众多选择中,高性能复合材料的主要类别是环氧树脂、聚酯和乙烯基酯。这三种树脂类型负责制造数十亿的航空航天、汽车和海洋应用,但不仅限于家庭维修,甚至不限于建筑物和桥梁的基础设施。随着树脂的设计改变人们对速度、效率和强度的看法,可能性几乎是无限的。 并非所有的树脂都是一样的。尽管固化部件在视觉上具有相似性,但树脂类型的分子式差异很大。这些化学差异严重影…

    2022-11-20
    8.5K00
  • 环氧树脂变黄需要多长时间?

    环氧树脂是很棒的东西。您可以将它用于从覆盖桌面到制作珠宝的任何事物,而且它也坚固耐用。 但是,不幸的是,随着时间的推移,环氧树脂并不总是保持透明。 即使短暂地暴露在阳光下,它也会变黄,特别是如果使用了错误种类的环氧树脂。幸运的是,有一些方法可以防止这种变黄并保持环氧树脂透明。 所有的环氧树脂都会随着时间变黄吗? 是的,环氧树脂会随着时间变黄。不,环氧树脂不应…

    2023-01-15
    2.8K00
  • 船舶胶衣和船漆选哪个好?

    船主之间经常存在一个两难的境地,即什么最适合用凝胶涂层涂覆玻璃纤维船体或涂漆。与往常一样,这两种选择都有其优点和缺点。无论您选择哪种方式,准备工作和维护都相似,但结果并不相同。一起来看看吧。 胶衣  如果与船舶涂料价格相比,胶衣是一种更便宜的材料,但它有几个优点。首先,它的成分将成功地保护您的船免受紫外线的伤害。其次,它是一种经久耐用的材料,通过适…

    2023-08-29
    4.4K00
  • 所有的碳纤维都会变黄吗?

    碳纤维长时间暴露在紫外线下会导致变黄。好消息是大多数时候汽车不会长时间暴露在阳光下。大多数碳纤维零件应该没有问题。也许一个好的紫外线等级的透明涂层会阻止泛黄。 不是所有的碳纤维都会变黄,但一些碳纤维制品在特定条件下可能会发生颜色变化,呈现出黄色或其他颜色。 碳纤维材料的颜色通常是由其表面处理和清漆涂层决定的。如果碳纤维制品的表面处理和涂层质量不佳或受到损坏,…

    2022-11-09
    10.9K00
  • 热胶不会粘在哪些表面上以及为什么

    热胶可能是世界各地业余工匠最喜欢的胶水,这是有充分理由的。热胶易于使用,它会粘附在大多数表面上,而且相当便宜。话虽如此,但是,有些材料不能用热胶粘合。 总体而言,热胶不会粘在硅胶,某些工业塑料以及油腻或油腻的表面上。有许多不同种类的热胶棒可用于粘合几乎所有材料。如果粘附有问题,请确保表面清洁且没有油或油脂。 我发现一些网站说热胶不能用于粘合金属或玻璃,这是不…

    2023-09-01
    9.2K00
  • 脱模蜡的作用是什么(脱模蜡怎么用)

    脱模蜡是产品和模具之间非常重要的离隔层。如果没有脱模蜡,积层之后产品将可能与模具永久地粘在一起。

    2022-01-28
    6.6K00
  • 油性脱模剂会挥发吗

    是的,油性脱模剂中的溶剂成分可以挥发。油性脱模剂通常包含矿物油、合成油或植物油等基础溶剂,这些溶剂在接触到空气或受到热量作用时可以蒸发。 挥发性是油性脱模剂的一个特征,它允许脱模剂在工件表面形成一层持久的油膜,减少工件与模具之间的粘附力,使工件易于脱离。然而,随着时间的推移,油性脱模剂中的挥发性成分可能会逐渐蒸发,导致脱模效果降低。 因此,在使用油性脱模剂时…

    2024-06-17
    6.5K00
  • 什么是富锌涂料?

    富锌涂料是什么意思? 富锌涂料是指含有适量锌粉或与有机或无机粘合剂混合的锌粉的涂料。这种富锌涂料应用于在恶劣环境条件下运行并具有持续腐蚀风险的钢或其他金属表面。富锌涂料虽然能有效抵御恶劣因素,但仍需要面漆才能发挥最佳效果。锌粉通过简单地牺牲自身来防止金属被腐蚀。 锌粉是一种呈粉末状的锌材料,又称锌粉。 解释富锌涂料 锌是一种重要的化学元素,原子序数为30,位…

    2023-04-05
    7.4K00

发表回复

登录后才能评论
分享本页
返回顶部