在拉挤玻璃纤维和拉挤碳纤维之间做出选择

在拉挤玻璃纤维和拉挤碳纤维之间做出选择

拉挤玻璃纤维已成为现代世界的一个共同特征,大量用于建筑、公用事业、基础设施和消费品行业。 这种复合材料有两种关键成分:玻璃纤维和某种树脂,例如聚酯或乙烯基酯。在某些情况下,制造商可能会选择用类似的碳纤维材料代替玻璃纤维。这种交换使所得复合材料具有略微不同的特性,使其更适合特定应用。如果您想了解更多关于这两种拉挤产品的信息,请继续阅读。本文详细介绍了拉挤玻璃纤维和拉挤碳纤维之间的一些主要区别。拉挤工艺快速概览在深入研究玻璃纤维和碳纤维之间的差异之前,回顾一下这两种材料的制造过程将会很有帮助。拉挤成型涉及通过称为树脂浸渍机的特殊机器拉动增强材料(此处为玻璃纤维或碳纤维)。当树脂从机器的一端拉到另一端时,每根纤维都涂上了一种特别选择的树脂。然后湿纤维通过预成型导向器,使材料具有所需的形状。最后,纤维进入一个加热模具,仔细监测其温度使树脂固化成硬化形式。玻璃纤维和碳纤维玻璃纤维最初是作为无机硅砂存在的,它与石灰石和苏打灰一起被加热到极端温度——准确地说是2500 华氏度在此温度下,沙子呈熔融状态。然后,特殊的成型设备将熔融玻璃拉成令人难以置信的细线。相比之下,碳纤维最初是有机聚合物——换句话说,是与碳原子结合在一起的长分子链。在大多数情况下,这些聚合物通过聚丙烯腈 (PAN) 工艺转化为碳纤维。聚丙烯腈是用于制造碳纤维的特定聚合物的名称。多步 PAN 工艺包括将聚丙烯腈纺成纤维,进行化学改变以使其稳定,然后碳化和处理纤维表面。结果是一种比玻璃纤维更细的纤维,但可以采用与玻璃纤维完全相同的方式引入拉挤工艺。玻璃纤维与拉挤碳纤维现在您对玻璃纤维和碳纤维的起源有了基本的了解,您可能想知道它们在用作拉挤材料时表现出什么样的差异。以下是需要注意的四个最重要的比较点:

  • 重量和强度

由于其股线的直径相对较细,碳纤维的重量大约是玻璃纤维的一半。然而,当比较同等的拉挤玻璃纤维和拉挤碳纤维时,这种差异可能并不那么显着,因为树脂增加了大量的体积,通常在这两种情况下都超过了纤维本身。  碳纤维还表现出比玻璃纤维更大的纤维强度。然而,与重量差异一样,这种强度差异本身并不一定是一个重要因素。例如,碳纤维的纤维强度为 4127,而称为 E 玻璃的玻璃纤维类型的纤维强度为 3450——大约低 16%。然而,当您同时考虑这些因素时,两种材料之间的差异就会成为焦点。强度重量比表示每种材料相对于其重量的强度。E Glass 的强度重量比为 564,而碳纤维的强度重量比为 1013——几乎是后者的两倍。这种相对于重量的高强度意味着制造商在拉挤给定产品时需要使用更少的碳纤维。因此,拉挤碳纤维产品通常可以拥有更薄的横截面。这是真正减轻重量的地方,因为需要使用的树脂更少。

  • 刚性和韧性

除了比玻璃纤维更坚固外,碳纤维也更硬。这种额外的刚度可以证明非常有用,使制造商能够满足更精确的刚度需求。例如,CERN大型强子对撞机内的硅跟踪器模块需要一定程度的刚度,而只有碳纤维拉挤成型才能提供。然而,这种增加的刚性并不一定意味着碳纤维是所有应用的更好选择。玻璃纤维具有相对柔软的特性,对于需要高柔性图案的应用来说是更好的选择。碳纤维的小弯曲窗口可能会妨碍其在此类应用中的使用。正如重量和强度之间的关系一样,拉挤材料的刚性会影响其长期韧性。玻璃纤维通常被认为比碳纤维更坚韧,因为它更柔韧的特性使其更容易承受压力和身体虐待。碳纤维尽管强度更高,但断裂点通常较低,因此随着时间的推移更容易损坏。

  • 热膨胀

与钢和铝等材料相比,玻璃纤维的热膨胀系数相对较小——这意味着它不会因温度变化而显着变大。也就是说,如果暴露于足够极端的变化——或者如果公差特别严格——那么玻璃纤维拉挤成型可能不是合适的选择。碳纤维在这方面有一个显着的特性:它实际上具有负的热膨胀系数。因此,碳纤维会随着温度下降而膨胀。这种趋势有效地抵消了用于将纤维粘合在一起的树脂基体具有正系数这一事实,基本上导致接近中性的整体系数。

  • 成本

成本方面的优势显然落在了玻璃纤维的一边。生产长碳纤维是一个耗时且困难的过程,这自然使碳纤维更加昂贵。同样,玻璃纤维的更广泛用途——包括非突出产品——有助于确保其价格点保持更具竞争力。归根结底,玻璃纤维和拉挤碳纤维都具有独特的性能,但都不是所有应用的明显赢家。相反,您必须仔细考虑给定产品的需求和参数,以便选择最适合您需求的材料。

(93)
玻璃钢的优点是什么?
上一篇 2022-11-19 17:14
玻璃纤维树脂部件导电吗?
下一篇 2022-11-19 18:07

猜您喜欢

  • 环氧树脂灌封胶操作失误的常见提示

    环氧树脂灌封胶近年来的应用领域十分多,但是由于很多人对于环氧树脂灌封胶的理解不深,导致了在使用的时候经常发生了一些操作上面的误区;都说三分选型、七分工艺,由此可见施胶工艺的重要性;那么用户在施胶工艺中有哪些操作误区呢? 一、固化后还有软的地方,没有完全变硬 1、这种情况一般是发生在主剂和固化剂混合后没有被搅拌均匀的情况下的,所以搅拌的过程中一定要注意刮边和清…

    2023-02-17
    6.9K00
  • 影响玻璃钢模具设计的事项

    通常在模具设计阶段,投入时间、精力和金钱比较多,但可以在以后避免或减少生产的潜在问题。

    2018-09-19
    8.3K00
  • 汽车制造商在哪里使用碳纤维?

    随着碳纤维在汽车工业车辆中的应用取得的进步,碳纤维在车内安全使用方面也取得了进展。 碳纤维汽车零部件的清单继续扩大,用于汽车和赛车应用;例如,丰田普锐斯PHV配备了碳纤维增强塑料尾门,据称这是量产汽车中首次出现这种情况。 碳纤维可以融入汽车的许多领域,包括: 车身部件 碳纤维可以在车身上使用;尽管每个品牌的车身都不同,但在很大程度上可以定义为发动机部分和盖子…

    2024-03-22
    6.2K00
  • 如何拍摄完成的环氧树脂作品?

    柔和的区域光是理想的。试着用白色的床单搭一个白色的大帐篷,照亮布的外面。这将有助于保持柔和的光线,没有热点。您还需要调整相机的角度并以正确的方式拼接以避免反射。 如果你拍了100张照片,肯定有一张是完美的!

    2022-11-15
    7.9K00
  • 玻璃钢板 – 玻璃纤维板指南

    对于行业,也对于业余工匠来说,有许多不同的材料可供选择,没有什么可取的。如果需要材料特别高的坚固性,重点很快就会落在玻璃钢上,即玻璃纤维增强塑料。这到底是什么以及玻璃纤维板的应用有多多样化,我们在GRP指南中展示了。 什么是玻璃钢(GRP)? 玻璃纤维增强塑料,俗称玻璃纤维,基于热塑性塑料(如聚酰胺)或热固性塑料(如环氧树脂或聚酯树脂)。它是一种纤维塑料复合…

    2023-07-27
    4.1K00
  • 雪地的完美树脂地板选择

    下雪可能是假日季节令人期待的宏伟预兆。它也可能是清洁地板消亡的关键因素。 泥泞的靴印、水坑、岩盐——雪伴随着各种各样令人讨厌的混乱。我们这些生活在寒冷气候中的人可能会想到,在一层新雪开始融化后,你的地板会变得多么邋遢。最糟糕的是,光着脚四处走动也可能会冻得要命。 因此,如果您住在多雪的地方,什么是最适合您的地板解决方案?让我们来看看一些最…

    2022-12-05
    5.0K00
  • 什么是氰基丙烯酸酯?氰基丙烯酸酯如何发挥作用?

    氰基丙烯酸酯(也称为 CA 胶和强力胶)是一种干燥速度极快的工业速干胶,可与水中的离子催化剂快速粘合。由于几乎在任何情况下都存在水,即使是常见的空气湿度也会激活正确化学反应所需的键。当与环境水分(湿度)接触时,这种粘合剂会发生阴离子聚合。这种化学反应会产生分子的聚合物链,从而形成强大的键,可立即连接应用表面。 氰基丙烯酸酯粘合剂可轻松粘合多种材料。只需几滴即…

    2025-01-12
    5.1K00
  • 玻璃纤维网格布和碳纤维网格布在强度方面有何区别?

    玻璃纤维网格布和碳纤维网格布在强度方面存在明显的区别。一般来说,碳纤维网格布具有更高的强度。 碳纤维网格布的强度主要受到碳纤维本身的特性影响。碳纤维具有极高的比强度(强度与密度的比值),通常比钢材还要高。碳纤维的强度可以达到几千兆帕(MPa),具有优异的拉伸强度和刚度。这使得碳纤维网格布在需要高强度和刚度的应用中表现出色,如航空航天、汽车赛车、体育器材等。 …

    2023-09-26
    7.9K00
  • 玻璃钢可以回收利用吗?、

    是的,玻璃钢可以进行回收利用,但目前经济性不是很大。 玻璃钢(Glass Reinforced Plastic,简称GRP)是由玻璃纤维和树脂组成的复合材料,其中玻璃纤维通常是主要的增强材料,而树脂则起到粘结和保护作用。 回收利用玻璃钢主要包括以下方面: 玻璃纤维回收:可以通过适当的处理和技术,将废弃的玻璃钢制品中的玻璃纤维进行回收。回收的玻璃纤维可以用于再…

    2023-08-15
    7.1K00
  • 轻型 RTM/LRTM工艺-低成本的替代品在封闭成型行业中处于领先地位

    用于纤维增强复合材料的RTM Light工艺(也称为LRTM、ECO、真空成型、VARTM)最近已成为中小批量应用中最受欢迎的封闭成型工艺。这项领先技术现在已经取代了以前的“传统或传统RTM”工艺,适用于大多数典型的船舶、汽车、工业和医疗复合材料成型应用,这些应用需要两个精加工面和紧密的尺寸公差。 LRTM模具准备注射与以前的传统RTM工艺相比,最近LRTM…

    2023-11-12
    3.4K00

发表回复

登录后才能评论
分享本页
返回顶部