复合材料:我们去过哪里,我们要去哪里?

复合材料:我们去过哪里,我们要去哪里?

曾几何时,早期的埃及人和美索不达米亚定居者在想要建造坚固耐用的结构时会混合泥土和稻草。复合材料的首次使用记录在公元前1500年,这种需求催生了复合材料产品古代复合材料被定义为两种或多种不同材料的组合,锯草为包括船只和陶器在内的产品提供加固。公元1200年,在成吉思汗时代,据记载,第一把复合弓——据说是准确而有力的——是由蒙古人发明的。使用木头、骨头和“动物胶”的组合,这些弓被压制并用桦树皮包裹。一种广泛使用和众所周知的复合材料是混凝土,其中小石头或砾石通过水泥粘合在一起。水泥在压缩下具有一定的强度,但可以通过添加钢筋、网、电缆或电线来加固。合成产品快进到1900年代初期,开发了乙烯基、酚醛树脂、聚酯和聚苯乙烯等材料。天然的单一树脂无法与合成产品相提并论。然而,单独的合成材料无法为某些结构应用提供足够的强度。1932年,Owens Corning推出了第一批商业出货的玻璃纤维产品─“Dust Glass Stop”过滤器。聚合物(塑料)与玻璃纤维相结合,非常坚固且重量轻。就这样,纤维增强聚合物(玻璃钢)行业开始了。需要是发明之母直到第二次世界大战(WWII)才创造了复合材料的许多进步。例如,军用飞机需要用于轻型应用的替代材料。除了具有高抗拉强度和重量轻外,工程师还对复合材料进行了试验,发现例如玻璃纤维复合材料对无线电频率是透明的。复合材料很快被改编并用于掩蔽电子雷达设备。二战结束后,一些复合材料产品创新者试图在不同的利基市场领域引入复合材料。最早的应用之一是在船上。1946年,第一艘商用船体问世。当Brandt Goldsworthy接受并推广该工艺,将机器推向市场,并为海洋、汽车行业、太空探索和航空领域的产品提供先驱力量时,拉挤工艺制造的产品就可以从其他公司获得并在市场上销售。他甚至因发明拉挤成型而受到赞誉——拉挤成型是一种制造玻璃纤维增​​强型材的制造工艺。目前,拉挤成型生产的产品包括身体防护装备(Kevlar)、汽车零件、建筑和基础设施零件(杆、槽、杆)运动和娱乐设备、工具手柄、火车坡道和医疗设备。复合材料的使命复合材料行业在70年代得到了真正的发展。开发了增强纤维和更好的塑料树脂。这时,全球公司杜邦公司发明了被称为凯夫拉尔的芳纶纤维,用于以轻便和坚固着称的个人身体防护设备。此外,大约在这个时候,碳纤维被开发出来。玻璃纤维由玻璃纤维或长丝增强的塑料制成。它们可以捆绑并编织成布。有时,它们被切成较短的长度并排列成矩阵。在拉挤成型中,部件的全长通常是连续纤维今天,由于其重量轻、高强度和低维护/长期可持续性的特性,碳纤维越来越多地被用作钢部件的理想替代品。尽管复合材料行业仍在发展,但它的发展和受欢迎程度正在上升。创新与应用复合材料新应用的创新和开发将继续推动增长。玻璃钢复合材料行业处于发展阶段,正在彻底改变建筑和基础设施、汽车和航空航天市场。体育和娱乐以及海洋中的许多特定行业应用也发生了巨大的转变。随着越来越多的细分市场利用复合材料的柔韧性、耐用性、耐腐蚀性和高拉伸性能,新应用和创新的潜力巨大。2015年,先进复合材料制造创新研究所(IACMI)——由美国能源部设立的耗资2.59亿美元的公私合营机构——将引领复合材料的创新。目标是使先进复合材料的制造成本更低、能耗更低,并且更易于回收。因此,一旦开发出新的纤维和树脂,将有助于为复合材料创造更多的应用。可回收的树脂将推动对环保、坚固和轻型产品的需求。IACMI首席执行官John A.Hopkins说:“IACMI的协作结构允许私营企业与研究机构和国家合作伙伴合作,以加速尖端制造技术的开发和采用。从IACMI项目中学到的重要知识可以帮助我们实现为汽车、风力涡轮机和压缩气体储存等行业创造低成本、高能效的复合材料制造的目标。”研究和市场分析师Grandview Research预计,从2020年到2027年,全球复合材料市场将以7.6%的复合年增长率增长。2019年,受轻质材料需求上升的推动,市场规模估计为890亿美元在汽车和运输、风能、国防和航空航天领域。事实上,由于对节能汽车的需求,预计汽车行业将在预测期内刺激市场增长。此外,凭借其高抗拉强度和轻质特性,复合材料越来越多地被用作木材、钢和铝等传统材料的替代品。为什么选择复合材料复合材料正迅速成为首选材料,因为它们具有高抗拉强度、耐腐蚀、耐用且重量轻。与信誉良好的制造商合作,确定基质和钢筋的适当组合。通过这种方式,可以生成具有针对特定目的的特定需求定制的属性的配置文件。复合材料也可以定制以导热或隔热。此类复合材料广泛用于电子设备,包括晶体管、太阳能电池、传感器、检测器、二极管和激光器,以及防腐和防静电表面涂层。金属氧化物复合材料具有特定的电气特性:广泛用于制造更小的硅芯片,这些芯片可以更密集地装入计算机。这提高了计算机的内存容量和速度。氧化物复合材料——用于电缆——也用于产生高温超导性能。

(114)

猜您喜欢

  • 预浸碳纤维成型

    预浸碳纤维成型能够创建复杂而精致的形状,并允许在铺层过程中精确控制纤维的方向。该过程包括四个主要步骤: 步骤 1:模具制作。模具用作制造相同零件多个部件的工具。通常由铝或钢制成,具体取决于所需零件的数量和所需的公差。 步骤 2:碳纤维加工。熟练的技术人员将碳纤维预浸料片按照特定方向手动铺设到准备好的模具表面上,然后仔细排列注入树脂的碳纤维片(称为预浸料),以…

    2024-11-20
    4.5K00
  • 你能分层浇注环氧树脂吗?

    您可以分层浇注环氧树脂。如果出现以下情况,您可能想要这样做:

    2023-01-07
    4.1K00
  • 绝缘材料可回收吗?(易燃吗?)

    许多人的房屋都装有隔热材料;他们想在冬天不开炉子或夏天不开空调的情况下保持家里的温度恒定。拥有良好的家庭隔热材料还可以帮助您减少能源费用。同时,让您的家全年舒适。 虽然家用绝缘材料不需要定期更换,因为它们可以使用很长时间,但绝缘材料可能会老化和损坏。如果你搬进了新公寓,保温材料可能会很旧,所以房子冬天不暖,夏天不凉。 如果你家周围碰巧有旧的绝缘材料,你需要以…

    2023-03-25
    5.6K00
  • 环氧树脂玻璃杯可以放入洗碗机吗?

    在本文中,我们将讨论环氧玻璃杯是否可用洗碗机清洗。我们还将解释为什么有些人喜欢在洗碗机中使用它们,以及如何确保您的玻璃杯在用这种方法清洗时不会损坏。 目录 玻璃杯可用洗碗机清洗吗? 如何清洁环氧玻璃杯? 用环氧玻璃杯喝水安全吗? 如何确保洗碗机的安全? 为什么不能将不锈钢杯放入洗碗机中? 为什么不能将不锈钢放入洗碗机? 你能洗环氧树脂杯吗? 你用什么密封玻璃…

    2023-01-14
    5.1K00
  • 您可以将环氧树脂倒在未固化的环氧树脂上吗?

    您可以将环氧树脂倒在未固化的环氧树脂上,但您应该为新层使用不同的产品。重要的是要记住,当您这样做时,您的初始地板将不再防水,可能需要额外的密封或修补才能再次获得干燥的表面。你有两个选择:

    2023-01-10
    6.1K00
  • 玻璃纤维布的厚度对耐高温能力有影响吗?

    玻璃纤维布的厚度确实对其耐高温能力有一定影响。一般而言,较厚的玻璃纤维布通常具有更好的耐高温性能。 较厚的玻璃纤维布可以提供更多的隔热层,减少热量传导和热辐射,从而增强其耐高温性能。较厚的布料可以提供更高的耐热性和更好的绝缘性能,使其能够承受更高的温度。 然而,需要注意的是,厚度并不是唯一影响耐高温能力的因素。布料的纤维类型、编织结构、涂层或处理方法等也会对…

    2023-09-30
    7.8K00
  • 深工件如何浇注树脂?

    想知道如何用很深的工件浇注树脂吗?您应该考虑慢慢倒水,而不是匆忙倒水。在倾倒下一层之前,至少让每一层凝固。此外,请确保在整个浇注和固化过程中尽可能保持工件凉爽,以避免树脂出现任何异常。 对于深度较大的工件,需要采取一些特殊措施来正确浇注树脂,以确保树脂能够充分固化而不产生气泡或变形。 以下是一些步骤和技巧: 选择合适的树脂: 根据工件的深度和所需性能,选择适…

    2022-11-05
    8.8K00
  • 什么是氧化?

    刚切好的苹果变成棕色,自行车挡泥板生锈,铜便士突然变绿。所有这些事件有什么共同点?它们都是称为氧化的过程的例子。 氧化被定义为氧分子与它们可能接触的所有不同物质(从金属到活组织)之间的相互作用。然而,从技术上讲,随着电子的发现,氧化被更精确地定义为当两种或多种物质相互作用时至少一个电子的损失。这些物质可能包括也可能不包括氧气。 顺便说一下,氧化的反面是还原—…

    2023-06-27
    3.9K00
  • 车库地板漆可以着色吗?

    是的,它可以。在获得您想要的颜色时,为环氧涂料着色可以节省大量时间。着色很容易,只需要在环氧地坪漆与硬化剂混​​合之前加水即可。例如,如果您希望将车库地板涂成比商店现有的颜色更浅的灰色,着色可以让您快速轻松地达到这种效果——无需购买更多产品或等待另一批油漆。

    2023-01-08
    4.2K00
  • 玻璃钢的强度和钢板的强度哪个更好

    一般情况下,钢板的强度通常要比玻璃钢高。钢是一种传统的结构材料,具有优秀的强度和刚度,广泛应用于建筑、桥梁、船舶、汽车等领域。相比之下,玻璃钢的强度相对较低。 钢板的强度主要取决于所使用的钢材的成分和处理方式。不同的钢材具有不同的强度等级,如普通碳素结构钢、高强度钢和特殊合金钢等。钢板的强度通常以抗拉强度(屈服强度)和屈服点(屈服应力)来衡量。 玻璃钢的强度…

    2023-12-12
    5.2K00

发表回复

登录后才能评论
分享本页
返回顶部