复合材料:我们去过哪里,我们要去哪里?

复合材料:我们去过哪里,我们要去哪里?

曾几何时,早期的埃及人和美索不达米亚定居者在想要建造坚固耐用的结构时会混合泥土和稻草。复合材料的首次使用记录在公元前1500年,这种需求催生了复合材料产品古代复合材料被定义为两种或多种不同材料的组合,锯草为包括船只和陶器在内的产品提供加固。公元1200年,在成吉思汗时代,据记载,第一把复合弓——据说是准确而有力的——是由蒙古人发明的。使用木头、骨头和“动物胶”的组合,这些弓被压制并用桦树皮包裹。一种广泛使用和众所周知的复合材料是混凝土,其中小石头或砾石通过水泥粘合在一起。水泥在压缩下具有一定的强度,但可以通过添加钢筋、网、电缆或电线来加固。合成产品快进到1900年代初期,开发了乙烯基、酚醛树脂、聚酯和聚苯乙烯等材料。天然的单一树脂无法与合成产品相提并论。然而,单独的合成材料无法为某些结构应用提供足够的强度。1932年,Owens Corning推出了第一批商业出货的玻璃纤维产品─“Dust Glass Stop”过滤器。聚合物(塑料)与玻璃纤维相结合,非常坚固且重量轻。就这样,纤维增强聚合物(玻璃钢)行业开始了。需要是发明之母直到第二次世界大战(WWII)才创造了复合材料的许多进步。例如,军用飞机需要用于轻型应用的替代材料。除了具有高抗拉强度和重量轻外,工程师还对复合材料进行了试验,发现例如玻璃纤维复合材料对无线电频率是透明的。复合材料很快被改编并用于掩蔽电子雷达设备。二战结束后,一些复合材料产品创新者试图在不同的利基市场领域引入复合材料。最早的应用之一是在船上。1946年,第一艘商用船体问世。当Brandt Goldsworthy接受并推广该工艺,将机器推向市场,并为海洋、汽车行业、太空探索和航空领域的产品提供先驱力量时,拉挤工艺制造的产品就可以从其他公司获得并在市场上销售。他甚至因发明拉挤成型而受到赞誉——拉挤成型是一种制造玻璃纤维增​​强型材的制造工艺。目前,拉挤成型生产的产品包括身体防护装备(Kevlar)、汽车零件、建筑和基础设施零件(杆、槽、杆)运动和娱乐设备、工具手柄、火车坡道和医疗设备。复合材料的使命复合材料行业在70年代得到了真正的发展。开发了增强纤维和更好的塑料树脂。这时,全球公司杜邦公司发明了被称为凯夫拉尔的芳纶纤维,用于以轻便和坚固着称的个人身体防护设备。此外,大约在这个时候,碳纤维被开发出来。玻璃纤维由玻璃纤维或长丝增强的塑料制成。它们可以捆绑并编织成布。有时,它们被切成较短的长度并排列成矩阵。在拉挤成型中,部件的全长通常是连续纤维今天,由于其重量轻、高强度和低维护/长期可持续性的特性,碳纤维越来越多地被用作钢部件的理想替代品。尽管复合材料行业仍在发展,但它的发展和受欢迎程度正在上升。创新与应用复合材料新应用的创新和开发将继续推动增长。玻璃钢复合材料行业处于发展阶段,正在彻底改变建筑和基础设施、汽车和航空航天市场。体育和娱乐以及海洋中的许多特定行业应用也发生了巨大的转变。随着越来越多的细分市场利用复合材料的柔韧性、耐用性、耐腐蚀性和高拉伸性能,新应用和创新的潜力巨大。2015年,先进复合材料制造创新研究所(IACMI)——由美国能源部设立的耗资2.59亿美元的公私合营机构——将引领复合材料的创新。目标是使先进复合材料的制造成本更低、能耗更低,并且更易于回收。因此,一旦开发出新的纤维和树脂,将有助于为复合材料创造更多的应用。可回收的树脂将推动对环保、坚固和轻型产品的需求。IACMI首席执行官John A.Hopkins说:“IACMI的协作结构允许私营企业与研究机构和国家合作伙伴合作,以加速尖端制造技术的开发和采用。从IACMI项目中学到的重要知识可以帮助我们实现为汽车、风力涡轮机和压缩气体储存等行业创造低成本、高能效的复合材料制造的目标。”研究和市场分析师Grandview Research预计,从2020年到2027年,全球复合材料市场将以7.6%的复合年增长率增长。2019年,受轻质材料需求上升的推动,市场规模估计为890亿美元在汽车和运输、风能、国防和航空航天领域。事实上,由于对节能汽车的需求,预计汽车行业将在预测期内刺激市场增长。此外,凭借其高抗拉强度和轻质特性,复合材料越来越多地被用作木材、钢和铝等传统材料的替代品。为什么选择复合材料复合材料正迅速成为首选材料,因为它们具有高抗拉强度、耐腐蚀、耐用且重量轻。与信誉良好的制造商合作,确定基质和钢筋的适当组合。通过这种方式,可以生成具有针对特定目的的特定需求定制的属性的配置文件。复合材料也可以定制以导热或隔热。此类复合材料广泛用于电子设备,包括晶体管、太阳能电池、传感器、检测器、二极管和激光器,以及防腐和防静电表面涂层。金属氧化物复合材料具有特定的电气特性:广泛用于制造更小的硅芯片,这些芯片可以更密集地装入计算机。这提高了计算机的内存容量和速度。氧化物复合材料——用于电缆——也用于产生高温超导性能。

(114)
材料号的头像材料号特邀作者

猜您喜欢

  • 你能给浴缸涂环氧树脂吗?

    当你的浴缸开始漏水时,你能用环氧树脂修复吗?如果您曾经想过这个问题,请阅读环氧树脂在浴缸中的使用寿命有多长?环氧树脂是一种非常耐用的材料。只要正确使用和维护,环氧树脂可以使用多年。 当您将环氧树脂涂在浴缸上时,它会粘附在浴缸表面并硬化成保护壳,保护表面免受刮擦或碎裂。您应该预料到,如果您正确维护浴缸,这种保护涂层将无限期地持续下去。 目录 你如何给浴缸涂环氧…

    2023-01-14
    5.4K00
  • 可以用聚氨酯泡沫做冲浪板吗?

    是的,聚氨酯泡沫可以用来制作冲浪板,这是冲浪板制造中最常用的材料之一。聚氨酯泡沫因其优良的性能和易加工性,被广泛应用于冲浪板的核心(板芯)材料,但制作冲浪板时也需要结合其他材料和技术来增强其性能和耐用性。 为什么聚氨酯泡沫适合做冲浪板? 聚氨酯泡沫具有以下特点,使其成为冲浪板制造的重要材料: 1. 轻质性 聚氨酯泡沫密度低,重量轻,这非常适合冲浪板对轻量化的…

    2019-10-15
    8.6K00
  • 如何稀释木材填料?

    所以,你有一罐木材填充物,它像石头一样坚硬。您想知道是否可以采取任何措施来使其再次可用。好吧,我在这里告诉你,是的,有东西!不,它不涉及用锤子凿出硬化的腻子(尽管那会很有趣)。 你如何润湿木材填料? 你如何润湿木材填料?有几种方法可以完成工作。 你能在干燥的木材填料中加水吗? 您可能想知道是否可以在干燥的木材填料中加水。答案是有可能,但这可能并不总是最好的选…

    2023-05-05
    6.1K00
  • 树脂会致癌吗?

    树脂本身一般情况下并不被认为是直接的致癌物质。然而,一些树脂在生产、加工或燃烧过程中可能释放出一些有害物质,其中一些被认为是潜在的致癌物质或可能对人类健康产生其他不良影响。 一些可能的致癌物质: 挥发性有机化合物(VOCs):某些树脂在固化或燃烧时可能释放挥发性有机化合物,如苯、甲醛等,部分被认为是潜在的致癌物质。 聚氯乙烯(PVC):PVC含有氯化物,其生…

    2022-11-16
    8.3K00
  • 用碳纤维加固火灾损坏结构

    碳纤维已成为结构工程领域的革命性解决方案。它具有出色的性能,包括高强度、低重量和耐腐蚀性,使其成为加固火灾损坏结构的理想选择。 结构完整性:火灾会削弱建筑物的结构组件,使其容易受到进一步的损坏。碳纤维增强聚合物 (CFRP) 具有巨大的抗拉强度,有助于恢复原有的承载能力。 耐久性:CFRP的主要优点之一是其耐用性。它们可以承受恶劣的环境条件,确保修复结构的使…

    2024-06-14
    6.1K00
  • 什么是粘合树脂?

    粘合剂树脂是一种前体塑料化合物,由羧酸组成,用于制造塑料和粘合剂,适用于从牙科工作到压制建筑板化合物和日常商业胶水的各种用途。石油工业生产的大部分粘合剂树脂都用于建筑材料,例如脲醛树脂,它主要用于将刨花板、纤维板和胶合板的组件粘合在一起。脲醛树脂作为粘合树脂在世界市场上占据主导地位,80% 以上的产品都需要使用树脂。截至 1996 年,全世界每年生产超过 1…

    2023-02-25
    3.1K00
  • 润滑剂有哪些不同类型?

    基本上有两种类型的润滑剂:石油基和合成。 这些中的每一个都适用于特定的目的和条件。不同类型的机器还受到不同程度的氧化和降解,并且仅与某些类型的机械部件、需求和环境兼容。 每个拥有汽车的人都知道,必须定期更换机油以延长发动机寿命。汽车发动机中的机油通常是石油基润滑油。虽然它含有与用于为汽车提供动力的汽油相同的碳氢化合物基,但配方却大不相同。 碳氢化合物或石油基…

    2023-06-25
    4.0K00
  • 凯夫拉尔和碳纤维哪个更好?

    这要看具体情况。凯夫拉尔比碳纤维提供更好的耐磨强度,这就是为什么它通常与防弹背心相关联。凯夫拉在极端温度下的性能也优于碳纤维,一些人认为这使其更适合海洋工业,并没有磁屏蔽影响。 “凯夫拉尔”和”碳纤维”是两种不同的材料,各自具有独特的特性和应用领域。它们在性能和适用性上有所不同,因此无法简单地说哪个更好,而是要…

    2022-11-09
    9.9K00
  • 碳纤维模具相对金属模具有哪些优势?

    碳纤维模具相对金属模具具有以下几个优势: 需要注意的是,碳纤维模具的制造成本相对较高,制造工艺相对复杂,并且在一些特定应用中可能存在一些限制。 因此,在选择模具材料时,需要综合考虑具体应用需求、成本效益和制造复杂度等因素。

    2023-08-30
    4.3K00
  • 动态粘度和运动粘度有什么区别?

    液体的粘度是影响液体流动行为的重要物理特性。高粘度液体更耐应力变形,不易流动,而粘度较低的液体更容易流动,抗应力性较差。测量粘度的两种主要方法是动态粘度和运动粘度。这些措施是相互关联的,但有不同的应用。 动态粘度,也称为绝对粘度,是更常用的测量方法。它测量流体的流动阻力-换句话说,流体的内摩擦,或者在给定温度和压力下的机械应力下变形的容易程度。动态粘度的技术…

    2023-06-25
    4.2K00

发表回复

登录后才能评论
分享本页
返回顶部