塑造对拉挤产品的需求

塑造对拉挤产品的需求

拉挤成型究竟是什么?拉挤成型是一种将增强纤维和液态树脂转变为纤维增强塑料 (FRP) 的制造工艺。 使用拉动方法,将纤维拉过树脂浴,饱和然后成型,拉过加热的钢模,然后再次成型。这种牵引方法允许高纤维负载和控制树脂含量。可以使用一系列增强纤维和树脂基体,例如玻璃、碳、聚酯、环氧树脂和乙烯基酯,以及热塑性树脂。这篇文章探讨了拉挤产品在各个领域越来越受欢迎的原因。根据应用所需的特性,可以添加许多不同类型的树脂和添加剂,以确保最终产品具有所需的特性。玻璃纤维增​​强塑料 (GFRP) 钢筋等复合材料可以在使用 15 年甚至更长的时间内保持其微观结构完整性和机械性能。拉挤产品是如何制造的?拉挤产品的特性来自于它们的制造过程。拉挤成型工艺通过拉伸方法将增强纤维和液态树脂转化为纤维增强塑料 (FRP)。有两种主要类型的牵引系统用于创建 FRP 型材:

  • 往复运动(手递手);和
  • 连续(猫轨道)。

将纤维拉过树脂浴并浸透,然后成型,拉过加热的钢模,然后再次成型。纤维增强材料必须在成品复合材料中准确定位,以确保强度和质量。当增强材料离开树脂浸渍器时,它们会通过“预成形”工具,该工具旨在挤出多余的树脂并将纤维增强材料组织成正确的形状。在此阶段,通常会加入诸如连续绞线材料和保护性表面面纱等添加剂,以改善最终产品的结构、耐腐蚀性和光洁度。当物品变硬时,聚氨酯拉块用于防止成品出现裂纹或变形,并将其切割成所需的长度这种牵引方法允许高纤维负载和控制树脂含量。根据具体应用,可以包含不同的树脂和增强材料——玻璃、碳、聚酯、环氧树脂和乙烯基酯,以及热塑性塑料树脂——以确保最终产品具有所需的特性。复合材料还可以通过添加颜色进行定制,并可以制成具有木纹、大理石和花岗岩等特殊外观。最终产品可以涂漆、切割、滴涂和螺栓连接。高度通用,低维护拉挤成型现在是航空航天、基础设施、工程、电信、石油和天然气、汽车和体育用品等关键应用市场中数以千计产品的首选制造复合零件的形式。在接下来的十年中,对拉挤产品的需求预计将成为复合材料行业最有前途的部分之一。与钢、铝和木材等传统产品相比,拉挤产品在垂直行业中越来越受欢迎,具有多种优势。例如,FRP 被建筑师、建筑商和房主用于各种产品,如窗户加固、隔热、油气管和运动器材与用于桥梁的钢、铁和木头等金属的腐蚀水平相比,拉挤产品的使用寿命更长,因为它们可以抵抗天气引起的腐烂。此外,它们重量轻,安装和能源成本较低,因此可用于石油和天然气行业的抽油杆。它们还可以用于风力涡轮机叶片的翼梁帽结构,因为它们重量轻且耐候性强。结合低维护、高耐受性、耐用性和强度,拉挤产品可以帮助企业最大限度地降低施工成本。拉挤产品的优点

  • 耐腐蚀–玻璃纤维复合材料可用于暴露于各种元素的应用,尤其是在空气传播和水传播盐分和湿气的沿海地区。它们需要最少的维护,并且可以抵抗天气因素。它们减少了暴露于水分和其他化学元素的影响。
  • 耐用–复合材料经久耐用,使用寿命长,这意味着它们的使用寿命比木材长。
  • 重量轻–通过拉挤成型制成的物品比钢轻 70%,比铝轻约 40%。它们耐腐蚀,也可以不导电。这使得此类产品更易于运输和安装,最终有助于降低成本。

    高强度–以千克为单位,玻璃纤维复合材料比金属更坚固。拉挤产品在轴向(纵向)方向最强。为了优化最终产品的高应力区域并为其提供额外的强度,可以改变方向和格式。
  • 防火安全–在制造阶段,可以将防火添加剂引入拉挤复合材料中,使其更安全并符合消防安全法规。
  • 隔热–与金属相比,复合材料的导热性较低。因此,它们是用于需要将能量损失降至最低的结构的绝佳产品。
  • 电气绝缘–拉挤材料也可以是非导电的,并且在载流应用中非常出色,例如公用设施和电信杆。
  • 绿色–复合材料在其使用寿命结束时有一些可回收的可能性,这使它们成为寻求绿色环保的公司的可持续选择。它们使用寿命更长,并且有利于隔热,使其成为节能建筑的绝佳选择。

不断增长的需求各种最终用户行业对耐腐蚀的耐用轻质产品的需求不断增长,推动了拉挤产品的发展机遇。例如,汽车、基础设施和体育用品行业。

(76)
玻璃纤维船的优点
上一篇 2022-11-18 22:26
借助 FRP 复合材料,人类飞行是否可能?
下一篇 2022-11-19 12:59

猜您喜欢

  • 碳纤维角(碳纤维90直角)

    增强型复合材料角料由100%碳纤维制成,使用机织和多向预浸料的组合,以产生有吸引力且极强的90度角。截面两侧均采用A型饰面制造,100%空隙和无针孔,非常适合从模型制作到各行各业的结构应用。所有的角料都在高压釜中在120°C下固化,以生产耐热和耐化学腐蚀的产品,即使是最极端的环境也是理想的选择。增强的复合材料角度采用经典的2×2斜纹编织碳纤维和紫外线稳定哑光…

    2024-06-06
    6.2K00
  • 玻璃钢有甲醛成分吗

    通常情况下,玻璃钢制品本身不含有甲醛成分。玻璃钢是由树脂和玻璃纤维组成的复合材料,其中常用的树脂类型包括聚酯树脂和环氧树脂。这些树脂在固化过程中会发生化学反应,形成坚固的基质,而不会释放出甲醛。 然而,需要注意的是,某些玻璃钢制品可能在制造过程中使用胶粘剂、涂层或其他附加材料,这些材料可能含有甲醛或其他挥发性有机化合物。这些额外的材料可能会导致甲醛的存在。因…

    2023-11-29
    5.3K00
  • 不饱和树脂和环氧树脂的特点和比较

    不饱和树脂和环氧树脂都是常见的复合材料中使用的树脂类型,它们在不同的应用领域具有各自的优势和适用性。以下是它们的一些特点和比较: 不饱和树脂: 环氧树脂: 选择不饱和树脂还是环氧树脂应该根据具体的应用需求和材料特性来决定。如果需要较低的成本、较好的流动性和较好的耐化学腐蚀性能,不饱和树脂可能是一个不错的选择。而如果需要较高的机械性能、电气性能和粘接强度,以及…

    2023-08-27
    4.7K00
  • 如何防止和去除树脂气泡——用于超透明、无气泡的环氧树脂铸件

    气泡会影响环氧树脂涂层或铸件的透明度。幸运的是,有几种行之有效的方法既可以防止在应用涂层时出现气泡,也可以处理尽管您尽了最大努力来防止气泡最终出现在涂层中的任何气泡。以下是一些防止或去除环氧树脂无气泡涂层气泡的方法。 防止气泡 除气 在裸木上涂覆或浇铸环氧树脂之前,加热木材并在木材冷却时涂上环氧树脂。在冷却过程中,木材中的空气收缩,吸入环氧树脂。如果在木材变…

    2023-02-24
    3.2K00
  • 关于环氧树脂地坪厚度的知识

    环氧树脂地坪的厚度取决于不同的因素,例如预期用途和环氧树脂的类型。较厚的环氧树脂地坪将具有更强的表面来吸收震动和冲击,从而可以防止损坏下面的混凝土基材。 确定环氧树脂地坪厚度时,务必确保仅使用优质材料。使用最优质的材料将延长地板的使用寿命,提高安全性并保证地板能够承受经常使用。 作为安装环氧树脂地坪和可靠地确定合适厚度的专家,我们理解可能会出现有关最佳选择的…

    2022-12-05
    5.5K00
  • 使用 GRP 的利弊

    近年来,玻璃钢(GRP)越来越受欢迎。毫无疑问,它现在是现代的首选解决方案,但是什么让GRP成为如此多行业的首选材料?而且,更重要的是,它真的值得所有的炒作吗? 为了帮助证明我们的观点,这里我们来看看一些主要原因。 GRP的优点 缺点是什么? 事实上,我们在这里苦苦挣扎。由于上述许多原因,由玻璃增强塑料制成的产品通常是更有利的选择。 虽然起初GRP的成本可能…

    2024-03-27
    6.2K00
  • 什么是打磨海绵(砂纸海绵的特点和用途)

    磨砂海绵是浸渍有各种大小的砂砾的泡沫海绵,人们可以用海绵作为打磨工具来打磨各种表面。许多五金和工艺品商店都带有磨砂海绵和配件,例如旨在使它们更易于使用的支架,它们可以成为在家或车间周围放置的有用工具。也可以直接从制造商处订购此类海绵,或通过专门从事各种木工和家居装饰用品的互联网零售商订购。 与砂纸相比,使用砂纸海绵有许多优点。 最大的好处之一是可以清洗打磨海…

    2022-08-28
    6.2K00
  • 房车玻璃钢车壳能用多少年?

    房车玻璃钢车壳的使用寿命可以受到多种因素的影响,包括车辆的质量、制造工艺、维护保养以及使用条件等。一般来说,如果进行适当的维护和保养,房车玻璃钢车壳可以使用很多年。 玻璃钢材料具有良好的耐久性和抗腐蚀性,相对于传统的金属车壳,它们不容易生锈、腐蚀或受到紫外线辐射的损害。这使得玻璃钢房车的车壳在正常使用条件下可以保持较长时间的良好状态。 然而,需要注意的是,房…

    2023-08-15
    6.9K00
  • 玻璃钢风管的材料质量如何判断?

    判断玻璃钢风管的材料质量可以考虑以下几个方面: 综合考虑以上因素,可以更好地评估玻璃钢风管的材料质量。在选择供应商和购买产品之前,建议进行充分的调研和比较,选择质量可靠的玻璃钢风管供应商和产品。

    2023-09-04
    9.0K00
  • 可以在环氧树脂上使用强力胶吗?

    树脂是一种很好的粘合剂,适合那些进入手工艺或艺术项目的人。如果您知道要使用的正确材料和工具,则可以充分利用任何项目。一个可能令人困惑的问题是是否可以在环氧树脂上使用强力胶。 在开始项目之前,您应该熟悉许多不同类型的树脂和粘合剂。 强力胶与环氧树脂不同,因此重要的是要了解它们的工作原理以及何时最好使用一种而不是另一种。 可以在环氧树脂上使用强力胶吗? 是的,您…

    2023-06-22
    4.1K00

发表回复

登录后才能评论
分享本页
返回顶部